Converses of Jensen's operator inequality

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jensen’s Operator Inequality and Its Converses

where φ : A → B(H) is a unital completely positive linear map from a C-algebra A to linear operators on a Hilbert space H, and x is a self-adjoint element in A with spectrum in I. Subsequently M. D. Choi [3] noted that it is enough to assume that φ is unital and positive. In fact, the restriction of φ to the commutative C-algebra generated by x is automatically completely positive by a theorem ...

متن کامل

An Extension of Chebyshevs Inequality and Its Connection with Jensens Inequality

The aim of this paper is to show that Jensen’s Inequality and an extension of Chebyshev’s Inequality complement one another, so that they both can be formulated in a pairing form, including a second inequality, that provides an estimate for the classical one. 1. Introduction The well known fact that the derivative and the integral are inverse each other has a lot of interesting consequences, on...

متن کامل

An Operator Inequality Related to Jensen’s Inequality

For bounded non-negative operators A and B, Furuta showed 0 ≤ A ≤ B implies A r 2BA r 2 ≤ (A r 2BA r 2 ) s+r t+r (0 ≤ r, 0 ≤ s ≤ t). We will extend this as follows: 0 ≤ A ≤ B ! λ C (0 < λ < 1) implies A r 2 (λB + (1− λ)C)A r 2 ≤ {A r 2 (λB + (1 − λ)C)A r 2 } s+r t+r , where B ! λ C is a harmonic mean of B and C. The idea of the proof comes from Jensen’s inequality for an operator convex functio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Operators and Matrices

سال: 2010

ISSN: 1846-3886

DOI: 10.7153/oam-04-20